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In this paper, we consider the Langevin equation from an unusual point of view,
that is as an archetype for a dissipative system driven out of equilibrium by an
external excitation. Using path integral method, we compute exactly the proba-
bility density function of the power (averaged over a time interval of length y)
injected (and dissipated) by the random force into a Brownian particle driven by
a Langevin equation. The resulting distribution, as well as the associated large
deviation function, display strong asymmetry, whose origin is explained. Con-
nections with the so-called ‘‘Fluctuation Theorem’’ are thereafter discussed.
Finally, considering Langevin equations with a pinning potential, we show that
the large deviation function associated with the injected power is completely
insensitive to the presence of a potential.

KEY WORDS: Fluctuation phenomena; random processes; noise and Brownian
motion.

1. INTRODUCTION

Usually, works concerning out of equilibrium stationary systems deal with
their local statistical properties, some assumptions of homogeneity and
isotropy being reasonably assumed or understood: traditional theory of
turbulence, which focuses on local correlations of the velocity field fur-
nishes a good illustration of that. A rather new way to study such systems
was recently proposed by some authors, (1–3) who preferred concentrate their
efforts to characterize the process of injection of energy, imperatively
required to sustain the stationary state. To be more precise, in numbers of
such situations, there exists a channel of energy injection, usually located at
boundaries of the system (rotating blades driving a turbulent flow, heated
plate in Rayleigh–Bénard convection, piston shaking granular matter at an



edge of a vessel, etc.) together with a distinct channel of dissipation, often
provided by a bulk dissipation mechanism, viscosity or inelastic collisions.
This duality is explicitly expressed in the dynamical equation for the energy
which can always be written in the form Ė=I−D, where D is proportio-
nal to a coefficient of dissipation whereas I is entirely due to the injection
process: for instance, the evolution of the kinetic energy of an uncompres-
sible fluid is given by

“t
5r F

V
v2 dV6=F

“V
(gvisijnj−(p+rv2/2) v.n) dS−

g

2
F
V
sijsij dV (1)

where one recognizes easily a surface injection term and a dissipative bulk
term (sij=“ivj+“jvi). These two distinct ‘‘gates’’ lead to the establishment
of a permanent flow of energy throughout the system, and is obviously a
primordial feature amongst the stationary properties of the system. Thus,
some experimental measurements (1–3) and numerical simulations (4) were
performed to characterize the injection of energy (more easily reachable
than the dissipation), or more precisely the probability density function
(pdf ) p(e) of e=1

y >y0 I(t) dt, the averaged injected power during a time
interval of length y. In particular, in some works, (4–6) the quantity

r(e)=
1
y
log
p(e)
p(−e)

(2)

was measured, and it was noticed that, according to the conclusions of the
so-called ‘‘Fluctuation Theorem,’’ (7, 8) r(e) seemed to tend to a straight line
for large y. These observations were quite surprising, for the Fluctuation
Theorem was established for time-reversal systems, a property which is at
the heart of the demonstration of the theorem. A convincing argument was
recently proposed (4) to explain this seemingly universal behaviour: if one
considers that the signal of I(t) has only finite correlations, large deviation
theory predicts that log p(e) ’ yf(e) for large y. Consequently, r(e)=
f(e)−f(−e); but for large y, it is extremely unprobable to observe large
negative occurences of the averaged injected power (but not unpossible),
since in average, the injected power in a dissipative system is positive. As a
result, in concrete measurements of r(e), one can presumably only measure
r in a short vicinity of zero, for which f(e)−f(−e) % 2fŒ(0) e with an
excellent approximation: that is why a straight line behaviour is always
measured in real or numerical experiments.
Nevertheless, there was a lack of a real example of a nonequilibrium

dissipative model in which p(e) could be fully computed, in order to show
that time-reversal symmetry is absolutely required for the Fluctuation
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Theorem ‘‘really’’ to hold. The initial aim of this paper was thus to provide
a simple model, where the pdf p(e) is exactly computable, and which
mimics as simply as possible the presence of two distinct channels for
energy flow. One of the simplest (nontrivial) systems fulfilling these
requirements is provided by the Langevin equation

v̇+cv=k(t) (3)

Ok(t) k(tŒ)P=2Dd(t− tŒ) (4)

where fluctuations k(t) and dissipation cv are considered as two different
sources of modification of energy:

d
dt
11
2
v22= − cv2+ kv (5)z z

dissipation injection

Note that in absence of k, the system is clearly dissipative and non time-
reversal invariant, a property also shared by realistic hydrodynamic or
granular systems.
This interpretation of the Langevin equation is clearly uncommon:

deriving the Langevin equation as an evolution equation for a Brownian
particle in a thermalized surroundings, it appears clearly that the dissipa-
tive term − cv and the fluctuating term k are two different faces of the
action of the reservoir on the particle; the fluctuation-dissipation relation
D=ckBT testifies this profund link. In the present case however, we con-
sider the Langevin equation as a given evolution equation, irrespective of its
physical origin, and interpret it as a dissipative system v̇+cv=0 shaked by
a random gaussian force k; in particular, we will make in the following no
reference to the fluctuation-dissipation relation just cited.

Thus, we compute in this paper the pdf of

e=
1
y
F
y

0
dtŒ k(tŒ) v(tŒ) (6)

in the permanent regime using the path integral method (we compute also
the pdf of the dissipated power). We show as expected that the function
r(e) is in this case not a straight line (to prevent any confusion, it is worth
noting that our result is not contradictory with that of Kurchan, (9) who
proved the Fluctuation Theorem for the power injected by an external
operator acting on a Brownian particle: the physical situation considered
here is by no means the same—cf. discussion in Section 2.5), though this
nonlinear behaviour is extremely difficult to verify numerically. Nor is also
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the slope of r around zero as predicted in the FT. Consequently, one
concludes that in general, the Fluctuation Theorem cannot be extended
strictly to intrinsic dissipative dynamics, as it has been sometimes here and
there proposed. (5, 10)

But some other important and novel features emerge also from our
study, which concern merely the large deviation function f(e) associated
with p(e): we show that this function is not a regular function but displays
an unexpected second order singularity; we discuss its physical origin and
show that it is intimately associated with the permanent regime which allows
rare initial fluctuations of the velocity which have deep consequences for the
large deviation function: thereof we conjecture that this type of singularity
could be widely encountered in large deviation functions associated with
energy injection, provided a stationary situation is considered.
Finally, we study also the effect of a pinning potential on this large

deviation function and show that adding a potential has rigorously no inci-
dence on it. This ‘‘universality’’ seems to confirm the relevance of consid-
ering the averaged injected power as a probe for extracting global features
of energy flow into a nonequilibrium system.

2. FREE BROWNIAN MOTION

2.1. Characteristic Functions

We consider a particle of mass 1, velocity v, whose dynamics is given
by (3), and want to compute the pdf of e in the permanent regime. To do
that it is convenient to compute first its characteristic function

p̂(l)=Oe−lyeP (7)

which is related to the Fourier transform of p(e) by FT[p(e)](k)=p̂(−ik/y).
In some works, (11) one computes already at this stage the asymptotic
exponential dependence of the characteristic function: Oe−lyeP ’ eyg(l), and
retrieves f(e) as the inverse Legendre transform of g(l): f(e)=g(l)+le,
gŒ(l)=−e. We will see that this procedure is not appropriate here, for
reasons which will be made clear later. One prefers thus compute first
exactly p̂(l), what is here fortunately feasible.
Let us consider the stochastic equation (3). The propagatorP(v1, y | v0, 0)

can be easily expressed in terms of a path integral: (12–14)

P(v1, y | v0, 0)=e
c

2
y×F

v(y)=v1

v(0)=v0
[Dv] exp 1 − 1

4D
F
y

0
dt(v̇+cv)22 (8)
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From this formula, one can deduce the probability density associated with
a given path:

P([v(u), 0 [ u [ y])=exp 1cy
2
−
1
4D

F
y

0
dt(v̇+cv)22 (9)

As a result, one has

p̂v0 (l) — Oe−lyePv0=F
.

−.
dv1 F

v(y)=v1

v(0)=v0
[Dv] P([v]) exp 1 −l F y

0
v(v̇+cv)2

(10)

=e
cy

2 F
.

−.
dv1 e−

1 l
2
+
c

4D
21v21 −v

2
0
2

×F
v(y)=v1

v(0)=v0
[Dv] exp 1 − 1

4D
F
y

0
[v̇2+(c2+4Dlc) v2]2 (11)

where O · · ·Pv0 designates an average over the realizations of v such that
v(0)=v0. The path integral in (11) is well-known and its value can be
exactly computed: (12)

F
v(y)=v1

v(0)=v0
[Dv] exp 1 − 1

4D
F
y

0
[v̇2+a2v2]2

=1p 4D
a
sinh ay2

−1/2

exp 1 − a
4D
(v21+v

2
0) cosh(ay)−2v0v1
sinh ay

2 (12)

Thus, let us define

c̃=cy (13)

l̃=2Dl/c (14)

g=`1+2l̃ (15)

one has

p̂v0 (l)=e
c̃/2 1cosh gc̃+1+l̃

g
sinh gc̃2

−1/2

× exp 1v
2
0 c

2D
l̃2/2

g coth gc̃+1+l̃
2

(16)
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To get p̂(l), one has to average over v0 with a probability 3 exp(−v
2
0 c/2D),

since it is the distribution of v(t) in the permanent regime:

p̂(l)== c
2Dp

F dv0 e−v
2
0 c/2DOe−lyePv0 (17)

=e c̃/2 1cosh gc̃+1+l̃− l̃
2/2

g
sinh gc̃2

−1/2

(18)

The calculation leading to (16) and (18) assumes a priori l > 0, but it is
useful to study the properties of the analytical continuations of these for-
mulae. First, one remarks that the square root in the definition of g does
not induce any breaking of analyticity, for it appears always in quantities
such cosh(gc̃) or sinh(gc̃)/g which are entire functions of l. Thus, one will
assume in the following that g=x+iy has positive real part.
Let us first look at p̂v0 (l) for v0=0 (the exponential term will not

modify the analytical properties of p̂v0 (l)). It is astute to write it as
2

2 This manipulation makes the leading term in the limit of large y explicit and allows for a
simple localization of the cuts.

Oe−lyeP0=e(1−g) c̃/2 1
1+e−2gc̃

2
2−1/2×11+1

2
1g+1

g
2 tanh gc̃2

−1/2

(19)

and assume again a cut in the negative real semi-axis for the definition of
the square root. Breaks in analyticity can arise if only one of the two terms
of (19) (separated by ‘‘×’’) is not defined (a superposition of two cuts
restores the analyticity, since they are associated with a square root). The
last term is not defined for g=x+iy such that

x=0 and 1 <
1
2
1y−1

y
2 tan c̃y (20)

This induces in the l̃-space a dashed half cut localized in the negative real
axis, beginning at the value l̃− of l̃ less but closest to −

1
2 such that

1=
1
2
1`|1+2l̃− |−

1

`|1+2l̃− |
2 tan c̃`|1+2l̃− | (21)

As c̃3 y, it is clear that l̃− Q −
1
2 when yQ..

The first term e (1−g) c̃/2`2/(1+e−2gc̃), as a function of g, is analytical
in the region x \ 0 (except at points x=0, y — p

2 [p]). But if one considers it
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now as a function of l̃, it appears cuts in the l̃-space due to the prescrip-
tion x=Re(g) > 0. It is easy to verify that these cuts are defined by

(1+2l̃) ¥
1
c̃
[−(3p/2+2kp)2, −(p/2+2kp)2], for k ¥N (22)

and again are located in the l̃ < − 12 half axis.
To summarize, p̂v0 (l) continued on the whole complex plane (as a

function of l) has a cut, dashed line shaped3 and localized on the negative

3We do not give further details on the precise structure of this ‘‘hacked’’ cut, for they are of
no importance in the following.

real axis. It begins at a value l̃− less than −
1
2 , but tends to −

1
2 for large y.

For p̂(l), the situation is similar, and gives also this dashed negative
cut. But there is a fundamental discrepancy, for the ‘‘second term’’
[1+(1+l̃− l̃2/2) tanh(gc̃)/2g]−1/2 gives here a novel cut, plain and local-
ized on the positive real axis, and beginning at a value l̃+ solution of

1[`1+2l̃+]3−6`1+2l̃+−
3

`1+2l̃+
2× tanh c̃`1+2l̃+=8 (23)

When yQ., one has simply l̃+Q 4. One has summarized these analytical
properties on Fig. 1; it is worth noticing that the extra cut of p̂(l) has deep
consequences on the shape of the large deviation function, as we show in
the following.

2.2. Pdf of Injected Power and Large Deviation Functions

Why did we study analytical properties of p̂v0 (l) and p̂(l)? A priori,
we could have remarked that p̂v0 (l), as well as p̂(l) (we will use henceforth
the notation p̂(v0)(l) to designate both p̂v0 (l) and p̂(l)) are such that

p̂(v0)(l) ’yQ.exp[yg(l)] (24)

with g(l)=
c

2
(1−`1+2l̃) (25)

(where ‘‘’’’ means an equivalence between logarithms (11)), and using a
traditional recipe, obtain the large deviation function of p(v0)(e) as the
inverse Legendre transform of g(l). This is actually correct for pv0 (e), but
gives wrong results for p(e), because the above mentioned procedure
neglects completely the presence of the extra cut in p(e), whose origin is the
prefactor of the exponential leading term.
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Fig. 1. Cuts of functions (a): p̂v0 (l) and (b): p̂(l) in the complex l̃ plane (see text for
details).

Thus, it is more suited to first express the Fourier inversion of p̂(v0)(l)
properly, and only thereafter extract the associated large deviation function
from a saddle point expansion. (15)

Let us define ẽ=e/D the dimensionless injected power. One has

p(v0)(ẽ) — D×p(v0)(e) (26)

=
c̃

4ip
F
i.

−i.
dl̃ p̂(v0)(cl̃/2D) exp

1 c̃
2
ẽl̃2 (27)

The leading exponential term in this integral is exp[yh(l̃)] with h(l̃)=
c
2 (ẽl̃+1−`1+2l̃). The saddle point expansion method requires to distort
the usual path of integration l̃ ¥ iR in such a way that h(l̃) be always
real. Let us parametrize `1+2l̃=x+iy (with x \ 0). Two paths ensure
Im h(l̃)=0; they are

l̃1(x)=
x2−1
2
, (x ¥ [0,.[) and (28)

l̃2(y)=
1
2
1 1
ẽ 2
−y2−12+i y

ẽ
, (y ¥ ]−.,+.[) (29)

(see Fig. 2) and give h(l̃1(x))=
c

2 [
ẽ

2 (x
2−1)+1−x] and h(l̃2(y))=−

c

2 [
ẽ

2 y
2+

1
2ẽ (ẽ−1)

2] respectively.
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Fig. 2. Paths l̃1 and l̃2 where equation Im[g(l̃)]=0 is verified for ẽ > 0. One indicates also
the schematic behaviour of Re[g] along these paths: if it grows to . (‘‘up’’) or decreases to
−. (‘‘down’’). The saddle is located at the crossing of the two paths. Note that l̃2 does no
longer exist if ẽ [ 0, but in that case l̃1 vanishes at infinity.

Owing to the prescription Re`1+2l̃ \ 0, the path l̃2 does exist only
if ẽ > 0. The next step consists in choosing the right path of integration.
From now, the computations for pv0 (e) and p(e) differ.
For pv0 (ẽ), the situation is relatively simple, since neither l̃1 nor l̃2

crosses the cut-off of p̂v0 . In the following, we give details only for v0=0
because it simplifies a bit the computation; we postpone remarks concern-
ing the incidence of a non-zero initial velocity.
It is easy to see that l̃2 is a valid integration path if ẽ > 0 (in particular,

the prefactors of the exponential do not cause problems of convergence). If
ẽ [ 0, the path l̃2 is not defined, but using a semicircular contour, one
shows easily that (evidently) p0(ẽ)=0 strictly in this case. To summarize,
and after some calculations, the pdf p0(ẽ) of the dimensionless injected
power ẽ= 1

Dy >
y

0 dt k(t) v(t), knowing that the initial velocity v0 is zero, is
given by

p0(ẽ)=˛
I(ẽ)×e−

c̃

4ẽ
(ẽ−1)2 if ẽ > 0

0 if ẽ [ 0
(30)

with

I(ẽ) —
c̃

4ip
×F

s+i.

s−i.
dg ge

c̃ ẽ

4
(g− ẽ −1)2 11+e−2gc̃

2
2−1/2×11+1

2
1g+1

g
2 tanh gc̃2

−1/2

(31)

Injected Power Fluctuations in Langevin Equation 789



(s is any positive number). It is quite difficult to simplify this prefactor. In
the large y limit, it is equivalent to

I(ẽ) ’
yQ.

= c̃
p

1
ẽ(ẽ+1)

(32)

but this equivalence is not uniformly valid for all ẽ. In particular, for fixed y,
the large ẽ values give a ẽ −3/2 regression instead (a regime which arises for
ẽ N c̃).
From 30 one gets the following large deviation function

f0(ẽ)=−
c

4ẽ
(ẽ−1)2×h(ẽ) (33)

(h is the Heaviside function), what matches the rapid evaluation above
mentioned.
How are modified these results if v0 ] 0? Essentially, an ‘‘energetic’’

initial condition gives rise to a small interval of possible negative power
injection. To be precise, if v0 ] 0, the probability pv0 (e) is no longer zero if
e ¥ ]− |v0 |/2y, 0[ (of course the positive part of the pdf is also slightly
modified). But these modifications are minor, and in particular, they are
unable to affect the associated large deviation function (the negative
window vanishes when yQ.).
Let us now look at p(e). As the function h is the same for both pv0 (e)

and p(e), the paths l̃1 and l̃2 are similarly defined. The essential difference
comes from the positive cut in the analyticity of p̂(l), which can cross the
steepest descent paths l̃1 and l̃2 (see Fig. 3). If ẽ > 1/3, the path l̃2 avoids
the cuts and can be chosen as a valid integration path (Fig. 3(a)). On the
contrary, if 0 < ẽ < 1/3, it crosses the positive real cut and a portion of the
cut must be crawled along to close the path (see Fig. 3(b)). If e < 0, the
parabola l̃2 does no longer exist, but l̃1 is valid (more precisely a U-shaped
path sticked on each side of the cut—see Fig. 3(c)) and leads to a non zero
result for the probability. After some computations, one can deduce the
following result:

p(e)=˛
J(ẽ)×e−

c̃

4ẽ
(ẽ−1)2 if ẽ > 1/3

J(ẽ)×e−
c̃

4ẽ
(ẽ−1)2+K(ẽ)×e c̃(2ẽ−1) if 0 < ẽ [ 1/3

K(ẽ)×e c̃(2ẽ−1) if ẽ [ 0

(34)
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Fig. 3. Sketch of different real paths, according to the values of ẽ. The positive real cut fixes
the location of the saddle at his extremity l̃+ as soon as ẽ < 1/3.

with

J(ẽ) —
c̃

4ip
F
s+i.

s−i.
dg ge

c̃ ẽ

4
(g− ẽ −1)2 11+e−2gc̃

2
2−

1
2

×11− 1
8g
(g4−6g2−3) tanh gc̃2

−1
2

(35)

K(ẽ) — e−
3c̃
4
(3ẽ−2) c̃

2p
F
1/Max(0, ẽ)

x+
dx xe

c̃

2
[ ẽ
2
x2−x] 11+e−2xc̃

2
2−

1
2

×1 1
8x
(x4−6x2−3) tanh xc̃−12

−1
2

(36)
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where x+ is positive, defined by l+=(x
2
+−1)/2 (note x+Q 3 for large y).

For large values of y, one can simplify a bit these formulæ:

J(ẽ) ’
yQ.

c̃

ip
F
s+i.

s−i.
dg ge

c̃ ẽ

4
(g− ẽ −1)2= g

(3−g)(g+1)3
(37)

K(ẽ) ’
yQ.

2c̃
p

F
1/Max(0, ẽ)−3

0

dx

`x
1x+3
x+4
2
3
2
e
c̃

2
[ ẽ
2
x2−x(1−3ẽ)] (38)

but, as for I, the latter simplification for J is not uniformly valid for all
concerned values of ẽ.
It is easy to verify that neither J nor K have an exponential leading

term; thus, the large deviation function is easily computed as

f(ẽ)=˛ − c4ẽ (ẽ−1)2 if ẽ \ 1/3

c(2ẽ−1) if ẽ [ 1/3
(39)

This bipartite shape of the large deviation function is closely related to the
location of the saddle of the integration path, which remains fixed in the
complex plane as soon as ẽ < 1/3 (see Fig. 3). These results are successfully
compared with numerical simulations, see Fig. 4.

2.3. Discussion

These results address naturally some questions, in particular concern-
ing the surprising structure of f(ẽ): this function displays a second order
singularity located at a odd ẽ=1/3 value.
Let us first give some remarks on the shape of p(ẽ) (we restrict the

discussion henceforth to situations where y± c−1). This pdf is a rather
asymmetric curve, what can appear at first sight surprising: as the renewal
of the noise k is independent of the particle velocity v, occurrences of posi-
tive or negative instantaneous power injection kv are completely equi-
probable. Actually, the long time interval during which the mean is per-
formed is of crucial importance and is responsible for the peculiar shape of
the pdf; to understand this, let us consider an occurrence of a (rare) large
positive fluctuation of injected power: this occurrence understands that a
favourable sampling of the noise is realized, so that very often the noise
gives energy to the particle. Consequently, during the process, the energy
has a global tendency to increase, as well as typical values of the velocity
(despite the always acting dissipation); as the injected power is directly
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Fig. 4. Semilog plots of the pdf of injected power p(ẽ) for several values of c̃=cy. One plots
together formula (34) (line) and results of numerical simulation (dots).

proportional to the velocity, one sees that the direct effect of the positive
injection of energy is to enhance typical values of v implied in the evalua-
tion of e: this favourable feedback makes finally the occurrence of the con-
sidered fluctuation more likely, since less efficiency of the noise is globally
required to generate the fluctuation.
On the contrary, let us consider a (large) negative fluctuation: the

scenario is here inverted, since the typical velocity will certainly decrease
during the mean process: to ensure the large expected value of power ceded
back to the bath, one is then compelled to begin the motion with a large
kinetic energy, what is exponentially unprobable: the feedback is here
clearly unfavourable, and diminishes comparatively the frequency of such
occurrences.
This primordial role of the initial energy on the negative power injec-

tion mechanism gives actually also the explanation for the presence of the
negative tail in the large deviation function of p(ẽ): each fixed initial veloc-
ity is surely relaxed within a characteristic time 3 c−1, but this time is
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longer the higher initial velocity v0; thus, when this velocity is statistically
distributed according a Gaussian, rare large initial velocities construct the
negative tail of the distribution as well as the associated large deviation
function, which precisely characterizes rare events. It is worth to note that
the specific negative tail due to the thermalization of v0 begins actually at
the value 1/3, and thus affects substantially also the positive part of the
distribution.
This singularity of the large deviation function can be interpreted as a

phase transition, if one writes p̂(l) as a functional integral over the realiza-
tions of the noise k. Integration on v0 gives

p̂(l)3 F Dk exp 1 −1
4
F
y

0
k2−

lD
2

F
y

0
dt dtŒ k(t) k(tŒ) e−c |t− tŒ|

+
(lD)2

2c
5F y
0
dt k(t) e−ct6

22 (40)

and this expression can be viewed as a configurational partition function of
an unidimensional line k(t) of length y confined in a quadratic potential
V[k]3 > k2, with short range homogenous interactions (second term)
and an additional local destabilization term (third term), which is a direct
consequence of the thermalization of v0. If l is positive and too large,
the combined effects of the short range interaction term and the third
term—which can be viewed more or less as an inverted parabolic potential
acting in the vicinity of the t=0 end of the chain only—destabilizes the
chain which is no longer confined byV.
We would like to make here a little mathematical digression. One can

compute the characteristic function from the preceding formula. This leads
to the following formal expression

p̂(l)=exp 1 −1
2

C
.

n=1
log 11+ 2l̃

1+x2n
2

−
1
2
log 11−4l̃2 C

.

n=1

x2n
1+x2n

1
2+c̃(1+x2n)

1
1+2l̃+x2n
22 (41)

where xn is solution of the implicit equation c̃xn+2 Atan xn=np. That this
involved expression is exactly the simple formula (18) is quite amazing, and
one can derive some nontrivial mathematical relations from this connec-
tion; to mention but a few, one has for instance

C
.

n=1

1
1+x2n

=
c̃

2
(42)
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a relation which is easily checked for c̃Q 0 (x1 ’`2/c̃) and c̃Q. (the
sum becomes a Riemanian sum).
To conclude this paragraph, it is important to note that, in contradic-

tion with intuition, initial conditions can have deep consequences on the
shape of large deviations functions, even if the process displays finite time
correlations, provided that these initial conditions are statistically distrib-
uted over an unbounded interval, what is almost always the case if for
instance stationary processes are considered.

2.4. Dissipated Power

The pdf of dissipated power can also be computed along the same line
of reasoning. One gets for the characteristic function of the stationary
process:

7exp−lc F y
0
dt v2(t)8=e c̃/2(cosh gc̃+g sinh gc̃)−12 (43)

and one sees that there is not any positive cut in that case. As a result, the
large deviation function of the stationary dissipated power d=1

y >y0 cv2 is
easily derived as fdissip(d)=f0(d). Consequently, one expects the pdf of
dimensionless injected and dissipated power to be (in the large y limit)
similar but in the zero injection (or dissipation) region. This is effectively
the case, as shown on Fig. 5.

2.5. Note on the Fluctuation Theorem

As explained in the introduction, our model is a good system to test
the possible universality of the conclusions of the (Evans–Cohen–Morris)
fluctuation theorem, since the exact result is at hand. From (39), one has

r(ẽ) —
1
y
log
p(ẽ)
p(−ẽ)

’
yQ.

˛4cẽ if ẽ < 1/3

7
4
cẽ+
3
2
c−
c

4ẽ
if ẽ > 1/3

(44)

This function is clearly not a straight line, as it would be if the FT held
here (not even the slope at ẽ=0 is in accordance with the FT, which would
predict r(ẽ)=cẽ). Thus we exhibit here an example where the conclusions
of the theorem are not verified (due to the simple fact that the situation
considered here does not fulfill the hypotheses required for the Fluctuation
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Fig. 5. Injected and dissipated power pdf for the free Brownian motion (cy=10, D=1).
The two distributions are very similar but in the vicinity of zero, partly due to the constraint
cv2 \ 0, whereas kv Z 0.

Theorem to hold). On this ‘‘negative’’ result can we make two comments:
first, it is not contradictory with those of Kurchan (9). One looks for the
power injected by a random fluctuation in a dissipative system, whereas the
Fluctuation Theorem established by Kurchan considers the power injected
by an external operator in a system in equilibrium with a thermostat. We
are to see that the first situation is much more appropriate to describe
realistic systems driven far from equilibrium. Second, formula (44) illustra-
tes well the fact that Fluctuation Theorem seems to hold in so large a
number of experimental situations, as explained in ref. 4: in the vicinity of
ẽ=0, r(ẽ) must always have a straight line behaviour, as a consequence of
the large deviation law; on the other hand, as large negative values of ẽ are
extremely unprobable when y is large, it becomes practically unpossible
even to only measure r(ẽ) for large ẽ and large y with enough statistical
resolution: possible deviations from the straight line are just even not mea-
surable. In our case, crossover occurs for ẽ=1/3 and for this value,

796 Farago



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

ε

ρ(
ε)

Fig. 6. Function y−1 log[p(ẽ)/p(−ẽ)] for cy=8. Circles come from numerics with two
millions points of statistics, and stop before the crossover of the theoretical curve (solid) due
to the lack of negative points with large absolute value.

p3 exp(−5cy/3) which is of order 10−8 only if cy=10... Our model is thus
a good illustration in favour of arguments given in ref. 4 against an uni-
versal applicability of conclusions of the Fluctuation Theorem.
Before to proceed further, let us point out in what extent situations

considered by Kurchan and those corresponding to actual dissipative
experiments differ. A priori, any granular or turbulent experiment could
be viewed as a system of N particles submitted to both a thermostat (the
room temperature) and an external operator (a piston, a rotating blade).
Actually, the systems considered by Kurchan assume a thermalization per-
formed on each particle by the thermostat: they all undergo a thermaliza-
tion force − cẋi+Ci, what means that the thermostat act at the very heart
of the system (see Eq. (2.1) of ref. 9). Conversely, in granular or turbulent
experiments, the thermostat is rejected to the edges of the system: it acts on
the system through a surface term only, and therefore the results of ref. 9 do
not apply to them. Thus, it is not unreasonable to adopt a ‘‘hydrodynamic’’

Injected Power Fluctuations in Langevin Equation 797



point of view, casting away all irrelevant microscopic degrees of freedom,
and dealing only with usual hydrodynamic fields (or more generally rele-
vant degrees of freedom for granular media e.g.). The resulting system is an
in-volume dissipative system shaked by an external operator: the thermal
degrees of freedom appear in such an interpretation only through the dis-
sipative term, and the outer thermostat act solely on these. Thus, the
problem of energy injection in dissipative systems pertains to another
category that the Kurchan’s, a category illustrated by the system con-
sidered here which can be termed ‘‘essentially dissipative.’’

3. CONFINED BROWNIAN MOTION

The reasoning concerning the asymmetry of p(ẽ) suggests that certain
characteristics of this pdf seem—in the limit of large y only—to be inde-
pendent of the details of the particle dynamics, since it is based only on
considerations on energy and its conservative character. These observations
led us to infer a possible insensivity of p with respect to other microscopic
times than c−1 (c−1 itself cannot be neglected, since this time plays a role in
the process of dissipation of energy; and indeed, the curves for different c
have different and non superposable shapes), in cases where the initial
system would have been complexified. Thus, we considered several
confined Langevin systems:

ẍ+cẋ+VŒ(x)=k(t) (45)

Ok(t) k(tŒ)P=2Dd(t− tŒ) (46)

where we used for V(x) an harmonic potential V(x)=1
2 w

2x2, a non linear
‘‘hard’’ potential V(x)=1

2 w
2x2+a4 x

4 (a > 0), a non linear asymmetric
‘‘soft’’ potential V(x)=w2(a2e−x/a+ax), and also a bistable j4 potential
V(x)=Vb(x2−1)2. We numerically calculated for all these potentials (as
well as again the free case for comparison) the pdf p(ẽ), for large values of
y (c=1 for convenience).
The results (see Fig. 7) are extraordinarily surprising, since one cannot

distinguish the different curves from each other! One must keep in mind the
fact that the dynamical behaviour of x(t) is completely different in all these
cases: fully isochronic or anisochronic oscillatory, overdamped, bistable,
diffusive, these different Brownian motions lead all to apparently the same
curve, a coincidence which goes beyond all expectations.
To understand this phenomenon, let us look at the characteristic

function p̂r0
(l), where r0=(x0, v0) designates the initial conditions. Of
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Fig. 7. Injected power pdf for several trapped Langevin particles with D=1, y=20 and
c=1: three harmonic potentials (free motion w=0, w=1 and w=10), hard and soft non-
linear potentials (w=1, a=3 in both cases), bistable j4-potential with Vb=1 (strong anhar-
monicity is explored in this case—see details in text).

course, one cannot compute it exactly, since in general the dynamics is
nonlinear. Nevertheless, it is possible to express it in a fruitful form.
From Zinn-Justin, (14) one can derive the path integral representation of

the solution of the Kramers equation:

Pc(r1, y | r0, 0)=e c̃/2×F
r(y)=r1

r(0)=r0

[Dx] exp 1 − 1
4D

F
y

0
dt[ẍ+cẋ+VŒ(x)]22

(47)

(the index c recalls the value of the damping). As before, one gets from this

p̂r0
(l)=F dr1 F

r(y)=r1

r(0)=r0

[Dx]

× exp 1 c̃
2
−
1
4D

F
y

0
dt[ẍ+cẋ+VŒ(x)]2−l F

y

0
ẋ[ẍ+cẋ+VŒ(x)]2

(48)
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After some simple manipulations, one can recast this into

p̂r0
(l)=e

c̃

2
(1−g) F dr1 Pcg(r1, y | r0, 0)

× exp 1 − c
2D
(l̃+1−`1+2l̃)(E1−E0)2 (49)

where Ei=
1
2 ẋ
2
i+V(xi) (we recall l̃=2Dl/c, g=`1+2l̃). This formula

is useful, since the propagator Pgc goes exponentially fast to the equi-
librium value Peq(r1)=`cg/(2pD) U

−1
g exp(−cgE1/D) where Ua — > dx0

exp(−caV(x0)/D) is the configurational partition function. Consequently,
for each fixed value of r0, one has the true equivalence

p̂r0
(l) ’= cg

2pD
U−1g e

c̃

2
(1−g) F dr1 exp 1−

c

2D
[(l̃+1+g) E1−(l̃+1−g) E0]2

(50)

and one sees that there is no problem of convergence in the integral for any
real value of l̃ such that l̃ > −1/2 (for l̃ < −1/2 there is always a cut due
to the presence of a square root in g). Thus, one extracts exactly the leading
exponential term from the preceding formula as

log p̂r0
(l) ’

c̃

2
(1−g) (51)

and shows in the same time that the large deviation function of pr0
(ẽ) is

fr0
(ẽ)=−

c

4ẽ
(ẽ−1)2×h(ẽ) (52)

irrespective of the precise form of the potential.
Let us now look at p(ẽ): its characteristic function can be written

p̂(l)== c
2pD

e
c̃

2
(1−g)

U1
F dr0 dr1 Pcg(r1, y | r0, 0)

× exp 1 − c
2D
[(l̃+1−g) E1−(l̃−1−g) E0]2 (53)

A priori, one must take care of the fact that the equivalence P(r1, y | r0, 0)
’ Peq(r1) is not reached uniformly with respect to r0, as already noticed.
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But, if one inspects the free Brownian case, for which the exact result is
computed, this replacement is finally equivalent to neglect exponentially
small corrections (terms like tanh gc̃ replaced by 1 for instance); this is
precisely this approximation which leads to formulæ (37), (38) from (35),
(36): the only limitation is that the resulting formulæ are not uniformly
valid in the ẽ space. But the associated large deviation function is unaf-
fected by these corrections.
We can assume that this scenario is still correct in the general case, an

assumption which is very reasonable indeed. Thus, up to exponentially
vanishing factors, one has

p̂(l) ’
c`g

2pD
×
e
c̃

2
(1−g)

U1Ug
F dr0 dr1 exp 1 −

c

2D
[(l̃+1+g) E1−(l̃−1−g) E0]2

(54)

== 4g
(g+1)2− l̃2

×e
c̃

2
(1−g)×

U(l̃+1+g)/2U(g+1− l̃)/2
U1Ug

(55)

and it is easily seen that, again, the r0 integral diverges when l̃ approaches
l̃+=4, pointing out the probable beginning of a real cut, already
encountered when V=0. Noticing that the leading exponential term is
exp( c̃2 (1−g)), also insensitive to the presence of a pinning potential, one
deduces that also in this case the large deviation function is given by (39). Of
course, fully mathematical precision is not given here, but we think that
convincing arguments are nevertheless given in favour of our result.
Concerning the prefactor of the large deviation function, it is interest-

ing to mention that it keeps in general a dependence on the form of the
pinning potential, through the functions U. In fact, formulas like (37) and
(38) can themselves be simplified; for instance

J(ẽ) ’ 1 4c̃
p(3ẽ−1)(ẽ+1)3

2
1
2

(56)

(we did not propose this equivalence previously, for it is not correct in the
vicinity of ẽ=1/3, unlike formula (37) ...). For the general case with a
potential V, this ‘‘supersimplification’’ gives

J(ẽ) ’ 1 4c̃
p(3ẽ−1)(ẽ+1)3

2
1
2
×
U(ẽ −1+1)2/4U(3− ẽ −1)(1+ẽ −1)/4

U1Uẽ −1
(57)

Thus, the pdf associated with different potentials do not exactly coincide at
large y, except at the value ẽ=1. But, at the level of the large deviation
function, the universality of f(ẽ) is reached. The combination of these two
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points explains probably the remarkable coincidence of the different curves
on Fig. 7.

4. CONCLUSION

In this paper, we considered the Langevin equation as a dynamical
evolution of a simple dissipative system driven by an external forcing, and
computed the probability density function of the time-averaged injected
power in the permanent and non permanent regimes. We showed that the
associated large deviation functions are different, in particular a negative
tail exists only in the permanent regime. We explained the origins of this
discrepancy and highlighted the role of the rare but very energetic initial
conditions; we showed also that the system considered here does not verify
the so-called Fluctuation Relation f(ẽ)−f(−ẽ)=cẽ, even in the vicinity of
ẽ=0, indicating thence that any attempt to enlarge careless the applica-
bility of the conclusions of the Fluctuation Theorem to dissipative systems
is rather questionable.
We considered thereafter Langevin equations with pinning potential,

and showed that the associated large deviation functions are completely
insensitive to the potential (but not the pdf itself): this result appears to be
a good indication that large deviation functions could be an appropriate
tool to characterize well general properties of systems beyond some
peculiar irrelevant details which faded away through the process of averag-
ing. In our case, the function f tells us something global associated with
the energy transfer throughout the Brownian particle, irrespective to the
precise dynamics of each geometrical configuration.
A natural extension will be to consider stochastic coloured dynamics,

i.e., noises with time correlation. We want to test the ‘‘solidity’’ of f with
respect to correlations arising in the external forcing. Moreover, we can
address the question of the generality of the observed non-analyticity of the
large deviation function in systems in permanent regime where the velocity
field is unbounded: from our analysis of the Langevin system, we think
that such anomalies could be widely encountered in dissipative far-from-
equilibrium systems. An interesting perspective is besides to consider
extremely correlated noises, in order to check in this context the ideas
exposed in refs. 16 and 17, where some conjectures are made on the limit-
ing behaviours of the pdf of global variables in highly correlated systems.
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J. López, M. Nicodemi, J. F. Pinton, and M. Sellitto, Phys. Rev. Lett. 84:3744 (2000).

Injected Power Fluctuations in Langevin Equation 803


	1. INTRODUCTION
	2. FREE BROWNIAN MOTION
	3. CONFINED BROWNIAN MOTION
	4. CONCLUSION
	ACKNOWLEDGMENTS

